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Abstract. A pseudopotential technique has been applied to calculate lifetimes for 
positron annihilation in copper defected with bubbles of the noble gases Ne, Ar, Kr 
and Xe at  various gas densities. The positron in each case w a s  found to be in a 
surface state of the metal on the interior surface of the bubble, the wavefunction de- 
viating slightly from a perfect surface state according to the strength of the attractive 
polarization potential from the gas atoms in the bubble. This effect was  particularly 
noticeable in the case of xenon where the surface annihilation rate was reduced to 
about 40% of the perfect surface state. 

1. Introduction 

Positron annihilation techniques (PAT) are well established tools for the study of de- 
fects within all types of materials in the solid phase. The positrons, finding the defects 
attractive due to  their lack of positive charge, annihilate preferentially in the defects. 
Their lifetime and Doppler shifted annihilation radiation provide valuable information 
about the electron density and velocity distribution in this environment. Among the 
defects that can be studied in this way are the bubbles formed due to the precipitation 
of noble gas atoms in metals and interesting experimental results have already been 
reported (for example see Jensen 1988, Nieminen 1989). To the materials scientist, 
noble gas behaviour in metals is of continuing interest, due partly to the potential of 
the helium for causing metal embrittlement (important when helium is produced by 
(n,cr) reactions under neutron irradiation), and due to more general effects in processes 
such as sputter cleaning and ion beam mixing. In addition, fundamental aspects have 
received attention (Ullmaier 1983) with recent emphasis being paid to the heavier 
noble gases which can be found precipitated in the solid phase (Evans 1985). 

With respect to  theory, quantitative calculation of positron annihilation rates in 
small vacancy clusters decorated with noble gases were first performed by Hansen 
e t  a1 (1984) using the method of Puska and Nieminen (1983). The procedure which 
involves solving the three-dimensional Schrodinger equation over a section of the lattice 
incorporating the defect is difficult to  apply to larger defects like bubbles because of 
problems of positioning the noble gas atoms (the gas is often fluid), but primarily 
because the calculations quickly become too large, except for those with access to the 
largest computers. Jensen and Nieminen (1987) used a model which assumed that the 
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potential deep inside the bubble did not significantly change the surface state of the 
positron and as such solved only for a single layer of gas on the metal surface. The 
annihilation rate of a trapped positron was then found by adding the constant surface 
annihilation rate with the free electrons of the metal host to the annihilation rate off 
each gas atom as a function of distance from the metal surface. (The density of gas 
atoms as a function of distance from the metal was  found by means of a molecular 
dynamics simulation). In this way a characteristic annihilation rate was found as a 
function of the gas density. If the density is known, the gas pressure is known, and 
so an estimate of bubble size can be made. Their calculations on krypton and helium 
performed in this manner agreed very favourably with other more lengthy calculations 
they performed for asurface with multiple layers of gas, in order to  validate their initial 
assumption. 

We, Dunn e t  a1 (1990a), found that the use of pseudopotentials also produced accu- 
rate results when applied to the evaluation of bubbles of He gas in various metals. The 
use of pseudopotentials greatly speeds up the rate of calculation, reducing the problem 
to the solving of several one-dimensional Schrodinger equations. Pseudopotentials also 
allow for the evaluation over much larger bubbles than the Puska-Nieminen method, 
solve the problem in the correct symmetry and allow the potential of the gas atoms 
to be represented deep inside the bubble. 

In this paper we have applied the pseudopotential method to the calculations of 
lifetimes for bubbles of Ne, Ar, Kr and Xe in copper over a range of densities corre- 
sponding to  pressures up to the order of 5 x lo9  Pa  (corresponding to the maximum 
pressure likely to be found in such bubbles) at a temperature of 300 K. In addition, 
we compare the results for Kr with the experimental and more lengthy theoretical 
calculations of Jensen and Nieminen (1987) and show our results to be in excellent 
agreement with theirs. 

2. Methods 

2.1. Molecular dynamics simulations 

In order to find the average configuration of the trapped gas atoms within the bub- 
bles we performed molecular dynamics simulations, the simulation being of a standard 
particle-particle (P2) type (Hockney and Eastwood 1983). The particles were posi- 
tioned initially in a FCC structure in a bubble in a jellium host, the bubble radius 
usually being about 15 8, (we found little difference in the resulting profile away from 
the jellium if larger bubble sizes were used). The particles were then moved under the 
potentials of each other and of the host over several thousand time steps of about 5 fs 
(5 x s), the average atom configuration being built up after the assembly had 
established itself at  the desired temperature (300 K).  

For the gas-gas potential a standard 6-12 Lennard-Jones potential was usedt 

12 

V(.) = 4 r [ ( f )  - ($1 
t All calculations and results unless otherwise stated are expressed in atomic units with Ryd as the 
unit of energy (1 Ryd = (1/2) Hartree = 13.6 eV = 2.17 x lo-'' J). Values for density are expressed 
in atoms au-3 (1 atom au-3 = 6.79 X 1030 atoms mW3). 
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Table 1. 
simulations. The units are eV for energy (apart from E) and au for length. 

Values of constants used for the potentials in the molecular dynamics 

~~ 

Ne 3.04 0.4044 0.75 700 800 36 5.18 
Ar 10.12 0.4889 0.73 1600 1700 121 6.43 
Kr 14.23 0.5170 0.72 2700 - 163 6.91 
Xe 20.81 0.5584 0.71 3800 - 231 7.54 

(In order to  increase the speed of the program we did not consider particles at a greater 
distance than 2a atomic units from each other to have any interaction.) Values for a 
and E are given in table 1 from Bernardes (1958). 

The host surface potential is composed of a strong repulsive component which to  
a good approximation (Manninen et a1 1984) is proportional to  the electron density 
at the site of the gas atom, and of a much weaker attractive van der Waals potential. 
The repulsive component of the potential is given by 

where a is the constant of proportionality and the rest of the term is a parametrization 
of the Lang-Kohn (1973) surface electron densities, no being the host free electron 
density, XF the wavelength of an electron at  the hosts Fermi surface and F is a constant 
factor which for copper has a value of about 10.4. 

The attractive van der Waals force is given by Norlander and Harris (1984) to be 

where 

f(z) = 1 - [22(1+ z) + l]exp(-2z). (4) 

Zn is the distance to the host jellium, Zvw,C,, and k, are constants (Zaremba and 
Kohn 1975) given in table 1. 

The values of a and K, are somewhat nebulous. The origin of K, is that of a 
cut-off wavevector in the evaluation of the van der Waals potential and is known to 
be of the order of the inverse of the size of the atom (Zaremba and Kohn 1975). 
Values for a may be evaluated using HKS density functional theory. This involves 
solving for a system of N electrons, N Schrodinger-type equations, the potential term 
in each equation being the electrostatic potential of all the other electrons along with 
an effective exchange potential dependant upon the electron density. The procedure 
becomes difficult to  apply for heavy atoms and so values of a at present only exist 
for the lighter noble gas atoms, see for example Stott and Zaremba (1979) for He 
and Puska et a1 (1981) for Ne and Ar. We are therefore in the position of having 
to  estimate values of a for Kr and Xe. We have done this using the Thomas-Fermi 
approximation rather than the superposition scheme of Gordon and Kim (see Clugson 
1978), the Gordon-Kim method only being suitable for calculations on closed shell 
atoms and not metals. 
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3. Thomas-Fermi approximation 

3.1. Thomas-Fermi estimates of cy 

It is known (see March 1957) that the potentials and binding energies of atoms may be 
estimated with resonable accuracy by making use of the Thomas-Fermi approximation 
wherein the electron density at each point in the atom is assumed to  represent a free 
electron system, the electrons stacking up to the local chemical potential at that point 
so that 

E F ( r )  = ( 3 ~ ~ n - ( r ) ) ~ / ~  = V(r)  = Vp(r) + V ,  (5) 

where V,(r) is a potential which varies from point to point, V, is any constant com- 
ponent (for an atom adsorbed in a jellium this component would be approximately 
(37r2n,J2I3), E F ( r )  is the local Fermi surface and n- (n+) is the density of negative 
(positive) charges. Taken together with Poisson’s equation 

V2V(r)  = -8n(n+(r) - n-(v) )  (6) 

we obtain (in spherical co-ordinates) 

d2V (r)  8 
dr2 3n 
P- - -KVp(r) + (7) 

This non-linear differential equation was solved by using continuous analytic continu- 
ation with the boundary conditions 

where V-(r) (the net potential from the distribution of electrons) was varied until all 
the other boundary conditions were satisfied. 

The binding energy of the resulting system may then be calculated by summing 
the electrostatic, kinetic and exchange energies 

where 2 is the atomic number of the adsorbed atom, n ( r )  is the total charge density 
and n - ( r )  is the density of electrons. The summation is carried out over a volume of 
jellium which is large enough for the electron density to reach its normal density in 
the jellium away from the adsorbed atom. The kinetic energy term is given by 

2.21~7’ - 0.916r;’ - 0.88(r8 + 7.8)-l 
2 . 2 1 ~ ; ~  - 0.916r;’ - 0.0621oge(r,) - 0.096 

if r, 2 1 
if rs < 1 En- = 
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Table 2. The constants 7 ,  A and E in equations (41), (42) and (44) and p and 
r g  of Schrader’s free atom polarization potentials. a is the lattice translation vector 
of a unit cell of crystal at the solid uncompressed density of the material. T is the 
experimental lifetime and 7 the average enhancement factor required to reproduce 
this rate. 

Gas 7 A B P TO a (FCC) T exp. Zeff 7 

Ne 18 410 100 2.663 1.9 8.37 345 8.16 3 
Ar 36 631 545 11.06 2.23 9.93 420 12.6 3.1 
Kr 42 830 814 16.74 2.37 10.81 400 16.5 3.73 
Xe 70 1030 1382 27.29 2.54 11.71 400 20 4 

(see for example Clugson (1978); several more sophisticated local kinetic energy func- 
tionals now exist and the interested reader wishing to do a more thorough calculation 
is referred to  Plumer and Stott (1985)). The heat of adsorption is then the differ- 
ence between the binding energies of the jellium and free atom, and the energy of the 
adsorbed atom system. 

As might be expected from such a crude approximation the values for alpha de- 
termined using the Thomas-Fermi approximation were not accurate, yielding results 
almost twice the size of those for He, Ne and Ar found using HKS density functional 
theory. The heats of adsorption in each case did, however, increase linearly with elec- 
tron density and the ratios of the Thomas-Fermi a values for He, Ne and Ar were 
almost the same as those determined using HKS theory. We therefore thought it rea- 
sonable to  scale down the Thomas-Fermi Q values for Kr and Xe according to the 
amount that the He, Ne and Ar values had to be scaled down in order to  bring them 
into line with the HKS values. 

The values for Q used in the molecular dynamics simulations are given in table 2.  

3.2. Choice of potential 

Having determined approximate values for a ,  we must now estimate values for Kc. 
The primary function of Kc, the cut-off wavenumber in equation (3), is to prevent 

the collapse of the backwall of the potential. In the case of helium, the term involving 
IC, does not really interfere too much with the van de Waals inverse cube relation at  
the equilibrium position (Norlander and Harris 1984). For the purposes of this work 
we have assumed that this will also be the case for the other noble gases. IC, has 
therefore been chosen to  be greater than 0.5 au-l. 

The values of Q and Kc are then varied slightly until a potential well of the proposed 
universal shape (Vidali et a1 1983) is formed. 

All this may sound rather vague, but as noted by us earlier (Dunn e t  a1 1990), 
any reasonable combination of values for Q and I(, such that the potential well has a 
minimum of about the correct value and that the backwall of the potential increases 
monotonically into the jellium (as is believed to be the case (Norlander and Harris 
1984) produce much the same shaped potential. 

Figure 1 displays the surface potentials for Ne, Ar, Kr and Xe on copper used 
in the molecular dynamics simulations. The well depths for Ar, Kr and Xe are of 
the same order as the binding energies found by Engel and Gomer (1969) for these 
gases on a Tungsten surface (R 0.1 eV) and are in approximately the same ratio. The 
potentials have the same universal shape as that proposed by Vidali (1983). 
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---- 

Figure 1. The potentials for a Ne, Ar, Kr and Xe atom on a copper surface as 
used in the molecular dynamics simulations. 

4. Wavefunction calculations 

4.1 .  Puska-Nieminen method 

For bubbles with radii less than about 12 8, it is possible to use the method of Puska 
and Nieminen (1983). This method divides the bubble and a volume of crystal (we 
have actually used jellium) around the bubble into a linear mesh, the potential and 
electron density at each point then being found by the superposition of free atom 
densities and potentials. So for regions in the bubble which are in the image potential 
region of the metal the potential is given by 

where Vat is the electrostatic potential of the atom found from Hartree-Fock tables 
(Fischer 1972), is the image potential of the metal (see equation (30)) and Vpol is 
the potential due to the polarization of the gas atoms given by Schrader (1979) to be 

Schrader’s values for ,B and ro for each gas are given in table 2. 
For all other regions within or near the host, the potential is given in the approx- 

imation of an effective potential (see equation (28)) 
The three-dimensional Schrodinger equation is then differenced and solved numer- 

ically using a Gauss-Seidel over-relaxation technique. 
This method was applied only for the high density limit of each gas in order to check 

that any deviations of hhe positron away from a perfect surface state predicted by the 
pseudopotential calculation would also present in the more lengthy Puska-Nieminen 
calculation. It was assumed that the gas atoms were arranged in a FCC structure 
(this being the best representation of the average distribution of atoms in the void 
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at these high densities found by the molecular dynamics simulations) and the gas 
atoms nearest the jellium where placed at a distance from the jellium corresponding 
to  the first peak of the molecular dynamics simulation found for that density by a 
combination of adjusting the cavity size and plucking away atoms from the crystal 
closer to  the jellium than this distance. 

4.2.  Pseudopotential method 

We will only briefly outline the pseudopotential method here; more detailed accounts 
of the method and its variations are given by Mijnarends (1983) and Stott and Ku- 
bica (1975). 

The Schrodinger equation is split into two parts by defining the real wavefunction 
to be the product of a slowly varying envelope or ‘pseudo-wavefunction’ \Ep and a short 
range wavefunction T(T) which may be chosen to be the solution of the Schrodinger 
equation in a single Wigner-Seitz sphere around a given type of atom. 

T and qp satisfy the equations 

- V 2 Q p ( T )  + Vp(T)\Ep(T) = 

where V,,(T) is a Wigner-Seitz potential. The equations are related via Vp, which is 
termed the effective or pseudopotential. 

E,, - 2(d log, T(T)/dT)V if r < rws 
if r 1 rws. 

The effect of the log term on the pseudo-wavefunction is small, particularly in the 
noble gases where both T is flat over the majority of the Wigner-Seitz cell (see sub- 
section 5.2) and \Ep varies slowly. We will therefore neglect it as is the normal practice 
in surface and void calculations (see for example Nieminen and Manninen 1979) for 
a review of pseudopotential methods used in this type of problem and the validity 
of dropping the log term). We therefore do not solve for Q p ( ~ )  cell by cell, but in 
the approximation of spherical symmetry in a potential which must go to  -$+ (#+ 
being the positron workfunction) in both the host metal and the trapped gas. We do 
this by rescaling the ordinary potentials associated with the surface, the correlation, 
image and electrostatic potentials, so that they approach the desired limits for the 
bulk metal and bulk gas. Rescaling in this fashion for pure surface states was first 
done by Brown e l  a1 (1987). 

In spherical symmetry equation (11) may be rewritten as 

where the positron was as usual taken to be in an s state and U(r) and Qp(r) are 
related by 
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4.3. The Wagner-Seitz method 

The Wigner-Seitz method involves solving numerically the spherical Schrodinger equa- 
tion 

The positron is assumed to be in an s state and T must be normalized to 1 in a sphere 
having the volume occupied by a single atom of the assumed FCC crystalline gas so 

S ( r )  = ( 4 r ) ' / ' ~ ~ ( r ) r .  (16) 

The radius of the Wigner-Seitz sphere is therefore given by 

113 

fWS = (--> 4rpgas (17) 

where pgw is the number of gas atoms per unit volume (in atomic units). The equation 
being solved subject to the boundary condition 

dT(rws)/drws = 0 .  (18) 

A potential 

is employed where Ve(r) is the electrostatic potential 

where the last term is a small correction term which assumes that the number of 
electrons outside of the Wigner-Seitz sphere radius (being equal to the number of 
electrons gained from neighboring atoms) are concentrated at the sphere radius. The 
third term in equation (19) assumes that the correlation potential due to the atoms 
around the Wigner-Seitz sphere may be well represented by 

where R is the radius of an elementary shell from the centre of the sphere, s is the 
distance from the point r to an annulus on the shell, N the co-ordination number and 
R, the distance to the N nearest neighbours. The expression reduces after a little 
manipulation to 

N P  + 2- log, (-)I R, + r . (22) VpOl(IT - - ( R i  - ,,2)2 2(r2 - R i )  4r 
i 
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Figure 2. Positron wavefunction as calculated using the Puska-Nieminen method 
in jellium in a bubble of Xenon at a density of ( a )  2 x atoms au-3 and ( b )  3.0 x 

atoms au-3 showing the gradual deviation of the positron from a perfect surface 
state due to the polarization potential of the xenon. 

4.4. Normalization 

The function Yn(r) (the Wigner-Seitz wavefunction normalized to one in the Wigner- 
Seitz cell) must be renormalized such that the value of Trn(rWS) is the same for both 
the host and the contained gas which ensures that d(Yrn(rws)Qp(rws))/dr is a smooth 
and continuous function at  all points (Stott and Kubica 1975). We are free to chose 
Trn(rWS) to be what we wish and have chosen it to  be equal to 1 as this means that 
for regions where Trn(v)  = 1 (at the surface of the metal for example), Qp(r) = Q ( v ) ,  
which is convenient for evaluating annihilation rates with the free electrons of the 
metal. 

The entire wavefunction must then be normalized. To a first approximation we 
may assume that Trn(r) = 1 at all points, and as such the normalization constant will 
simply be the integral of the pseudo-density. An improvement on this approximation 
is to  assume that QP(r) varies slowly and smoothly over the regions where Trn(r) < 1 
such that it may be considered to have either a constant, or good average value (see 
figure 2). The normalization constant will then be given by 

where Trn(v) is the renormalized Wigner-Seitz wavefunction and the summations are 
over the i types of atom and j cells of each type of atom. The value of Tn(rws) in He 
as a function of gas density is given by Dunn et a1 (1990a) as 

This relationship turns out to also be the case in the other noble gases (see section 4) 
and values for 71 in each gas are given in table 2. Equation (23) may then be simplified 
if it is noted that 

where Tn(rws) is the value of the Wigner-Seitz wavefunction normalized to 1 in the 
cell at the sphere radius. Making use of equations (24) and (25) we may rewrite (23) 
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in the approximation of a continuously varying density as 

7 may be interpreted as a ‘missing volume’, the sum of all the l\k,127 may therefore 
be seen as the amount that must be taken off the integral of the pseudo-density to  
obtain the integral of the real positron density, figure 3 should make this clear. 

Figure 3. Schematic illustration of the potentials and wavefunctions used in the 
pseudopotential method. The real wavefunction (top) is the product of the renorma!- 
ized Wiper-Seitz wavefunctions (bottom) with the pseudo-wavefunction (middle). 
The Wigner-Seitz wavefunctions may be thought of as flat with a ‘missing volume’, 
7 ,  around the nucleus. The metal and gas Wiper-Seitz wavefunctions must be 
matched (illustrated by the arrow in the metal Wiper-Seitz wavefunction) so that 
the real function is a smooth and continuous function. 

4.5. The potential 

The effective potential Vp may be split into two parts, the potential of the host metal, 
and the image potential of the host along with the potential of the gas in the bubble. 
Each part of the potential must be formed so that it approaches in the jellium the 
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positron energy in the host, and in the bubble, the positron’s average energy in the 
gas at a given density. 

The dipole (electrostatic) potential and correlation potential are well approximated 
by 

where the first term is the electrostatic potential in the Thomas-Fermi approximation 
using the Lang-Kohn electron densities of equation (3), and the second term is a 
parametrization of the correlation energy of Bhattacharyya and Singwi (1982). This 
potential will have the correct ‘form’ but will not have the correct limit in the metal. 
However by altering the scale of the potential (rescaling) we may arrange for the 
correct limit to be achieved, figure 3 illustrates this, showing the dipole potential and 
rescaled dipole potential. Following Brown el a1 (1987) we have rescaled vd so that the 
new scale goes from the limit of the correlation energy (-0.5 Ryd) outside the jellium 
and to  the positron energy in the jellium ( - q 5 + ) ,  the rescaled potential is therefore 

Vp-h(t)  = A(Vd(Z) + 0.5) - 0.5 

where A is the rescaling factor 

The work function of Cu is w -0.95 eV (Hodges and Stott 1973). 
The image potential is of course given by 

where z ,  is the shirt of the mirror plane caused by the positron given by Lang and 
Norskov (1983). In the same way as was done for the host we must now rescale the 
image potential to  go to the limit of the positron energy in the gas of the density being 
considered. 

The image potential may now be rescaled so that the effective potential will be 
given by 

(0.5 + y ( t ) )  - 0.5. (0.5 - 
0.5 VP&) = 

The crossover point zo where Vp-h turns into Vp-i is decided by the condition 

4.6. Calculation of  lifetimes 
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4.6.1. Annihilation in the noble gas Wigner-Seitz cell. If the average momentum of 
a positron with respect to  the gas atom is known, a constant average enhancement 
factor for the atom may be used to obtain the annihilation rate so that the annihilation 
rate can be expressed in the form 

X(r) = nroc2TlT(T)I2n(v) (33) 

where 7 is the average enhancement factor at the mean positron momentum. Alter- 
natively, we may write 

where Z,, is the effective number of electrons per atom. Values for Z,, have been 
calculated for Ne, Ar, Kr and Xe by McEachran et a1 (1978, 1979, 1980). All such 
values are found to  be relatively constant for values of wavenumber K > 0.02 au-' and 
so provided that we are confident that our positron has a mean wavenumber well above 
this value we may with very little loss of accuracy use the same constant enhancement 
factor for all our calculations. This is indeed the case for positrons in bubbles where 
the positron is trapped in a surface potential well and has a wavenumber greater than 
0.02 au-l with respect to the gas atom. 

The total annihilation rate in the Wigner-Seitz sphere will therefore be given by 

(The correction term in equation (35) amounts to between 0 and 4% of the total 
annihilation rate). For the purposes of these calculations 7 was found by equating 
the annihilation rate calculated at the solid uncompressed density of the gas with 
one found by experiment. For this we have used the values given by Haberl and 
Douglas (1979) for Ne and Ar and the values given by Liu and Roberts (1963) for Xe. 
There is as yet no experimental value for krypton and so we have used the estimate of 
Hansen, Nieminen and Puska (1983). The values of the average enhancement factors 
used are given in table 2. 

4.6.2. Annihilation from the surface. For the purposes of these calculations we have 
assumed the positron to  be in a simple, perfect surface state, the positron being 
extended over the entire surface. The annihilation rate with the surface free electrons 
is determined in the Brandt-Reinheimer (1977) approximation with a cut-off in the 
evaluation for z > zo (Nieminen et a1 1984), z being the distance from the jellium 
edge and where zo is given in equation (32). (Recently, several more complex models 
have been proposed in order to explain the unobserved anisotropy which is expected 
in angular correlation curves due to  the positrons anisotropy in momentum parallel 
and perpendicular to the surface. See for example Brown et a1 (1988) in which the 
possibility of positrons being trapped at  surface defects is investigated, and Jensen 
and Walker (1988) in which there is a thorough treatment of correlation effects in 
strongly inhomogeneous environments.) 

{ !+ 134n-(z)) x lo9 if z 5 zo 

if z > zo. X n - ( z >  = 
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4.6.3. Total annihilation rate. The core annihilation rate off a single atom in the local 
approximation is the integral of the product of the positron density and the electron 
density. As the positron wavefunction is the product of the pseud-wavefunction and 
the renormalized Wigner-Seitz wavefunction, the core annihilation rate will be given 
by 

where r is the distance from the atom nucleus and n ( r )  is the core electron density 
and 7 is the average enhancement factor. When 4, may be considered to  be flat, or 
to  have a good average value across the cell we may assume that the annihilation rate 
from a single atom will be given by 

The total annihilation rate will be the sum of the contributions from the j cells of 
each atom type i and the annihilation rate off the free electrons where the free electron 
density is given by the parametrized Lang-Kohn surface electron densities. 

As we are dealing with continuous densities and do not have knowledge of the exact 
cell positions, we convert the discrete summation into a continuous one so that total 
annihilation rate will be 

In copper the total bulk rate is A FZ 8.2 ns-' (Mackenzie (1983); taking the free 
electron rate (= 3.8 ns-') away from this we estimate the bulk core rate to be A,,,, = 
4.4  ns-' and the annihilation rate A,, with the noble gas core electrons will be given 
in equation (42) as a function of gas density (for which we use the average gas density 
in the void). 

5. Results 

5.1. Results from molecular dynamics simulations 
The molecular dynamics simulations were performed on gases up to a density equiva- 
lent to  a pressure of the order 0.5 x lo9 Pa at  300 K (Ronchi 1981). This is equivalent 
to bubbles of radius of about 10 A (assuming thermal equilibrium such that the rela- 
tionship P = 2y/r holds). 

The profiles away from the jellium exhibited a high degree of ordering above the 
gas's solid uncompressed density but below this density they became more fluid with 
a noticeable peak above the surface potential well, the second and third peaks falling 
off in size exponentially. An increase of pressure caused the first peak to be pushed 
in towards the jellium. The total movement of the position of the first peak from the 
lowest to  the highest pressure was about 1.5 au for each gas. 

Figure 4 shows typical density profiles for each gas at  four different densities. 
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Figure 4. Typical output from molecular dynamics simulations at four different 
densities for each gas at 300 K. 

5.2. Results of Wigner-Seitt. calculations and comparison with experiment 

The wavefunctions for all the gases were found to be predominantly flat, being depleted 
locally around the nucleus of the atom. The wavefunction at the Wigner-Seitz sphere 
radius as a function of density was found to be well represented by the relationship 

where values for q are given in table 2. Using the constant average enhancement 
factors given in table 2, the annihilation rate was in each case a linear function of the 
gas density given by 

X = Ap,, x lo9 s-l (42) 

where the density is in atomic units, or 

(43) X = 7rT,CZeffpgas 2 s-1 
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in SI units. Values for Z,, are given in table 2. The positron work function c$+, was 
also found to be a linear function of the gas density. The work function is given in 
units of eV by 

4+ = BP,, (44) 

Values for B are also in table 2. The linearity of the work function for argon is not as 
good as the other gases and is better described below 0.002 atoms au-3 by the binding 
energy as given by the optical potential in the low density limit (Hansen e2 a1 1984) 

E M 47rpg,d (45) 

where d is the scattering length and energy is in units of Ryd. 

5.3. Comparison with experiment 

Gullikson and Mills Jr (1988) have reported experimental values of binding energies 
of 1.55, 2.0 and 2.3 eV for solid uncompressed Ar, Kr and Xe respectively. These 
values are somewhat smaller than the values of 2.0, 2.4 and 3.1 eV found using the 
Puska-Nieminen method (Hansen et a1 1983) and 2.2, 2.5 and 3.4 eV found by us 
using the Wigner-Seitz method. 

The discrepancy between experimental and theoretical values is not unusually large 
for positron work functions. The consistently lower experimental values do however, 
lead us to suspect that the practice of using 'free atom' polarization potentials in the 
solution of this type of problem may be a possible source of error and so should be 
reconsidered. 

5.4. Results for positron wavefunction and surface annihilation 

The positron wavefunctions and the resulting annihilation rates in empty voids were 
found to be independent of the void size above a radius of 20 au and the calculations of 
the positron wavefunctions were always carried out in bubbles above this size (usually 
about 30 to 40 au). 

The surface annihilation rates were, as a result of the change in the wavefunction 
caused by the presence of the gas, a function of the gas density (and hence of the gas's 
work function), they are well parametrized by the Fermi-Dirac-type relationship 

The deviation of this rate from a perfect surface state rate is small in neon (about 
10%) at the highest densities. In argon and krypton the reduction is greater a t  high 
densities (about 25%). In the case of xenon the reduction is very marked, being about 
60% at a density of 3 x atoms au-3 equivalent to a pressure of 2.8 x lo9 Pa and 
bubble radius of 22 au (Ronchi 1981). This deviation of the positron wavefunction in 
xenon is displayed in figure 2 where the calculation has been performed by the Puska- 
Nieminen method lending weight to the results of the pseudopotential calculations. 

The experimental annihilation rate for copper is X = 2 f 0.13 ns-' (Kogel e2 a1 
1979) for voids (we are unaware of an experimental external surface rate) as compared 
with our value of X = 1.66 ns-'. We have no reason to offer for this discrepancy, though 
it does appear to be the case that external surface annihilation rates are about 15% 
less than internal surface (void) rates (Jensen and Nieminen 1987). 
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Figure 5. Annihilation rates off the core electrons of the Noble gases in bubbles of 
Ne, Ar, Kr and Xe. 

Table 3. The constants C and D in equations (47) and (48) and the range of binding 
energies, BE, of the positron over the range of densities considered. 

Gas C D B E  (eV) 

Ne 33000 24000 2.9-3.47 
Ar 58000 40000 2.9-3.8 
Kr 85000 55000 2.9-3.9 
Xe 118000 70000 2.9-4.0 

5.5. Annihilation with the  gas 

The annihilation rate as a function of gas density increased more than linearly with 
gas density, this being caused primarily by the decrease in distance of the first peak 
of the gas density profile from the jellium with increase of pressure. In the case of the 
heavier gases which had large correlation potentials, there was an additional increase 
due to the deviation of the positron wavefunction into the gas away from the perfect 
surface state. 

Figure 5 displays the annihilation rates of each gas as a function of density. 

5.6.  Total lifetime 

Adding together the surface and gas contributions to the bubble annihilation rate 
produces an almost linear dependency of lifetime on density. To a reasonable approx- 
imation the lifetimes of the bubble state are given by 

T = 600 - Cp,, PS (47) 

where values for C are given in table 3. We note at  this point, in view of the concern we 
expressed in subsection 5.3 over the use of Schrader's free atom polarization potentials 
in the evaluation of the binding energies of the gases, that calculations with the gas 
pseudopotential switched off yield results very little different to the results with the 
potential on. This is because any loss in the surface annihilation rate caused by 
extension of the positron into the gas is almost exactly compensated for by the increase 
of annihilation with the gas. As such, the accuracy of the evaluation is fortunately 
not sensitive to  minor inaccuracies in the gas pseudopotential. 
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Figure 6. Theoretical and experimental annihilation rates of a positron in a bubble 
of Krypton as a function of density compared with the results of Jensen and Nieminen. 

5.7. Compar i son  with experiment 

Experimental positron annihilation investigations of noble gas bubbles in metals seem 
to have been thus far confined to helium and krypton. In the case of krypton, Jensen 
et a1 (1988) determined positron annihilation rates as a function of gas density using 
densities found by transmission electron microscopy. Our theoretical results yield 
slightly longer lifetimes, but this discrepancy is due entirely to the use of theoretical 
rather than experimental surface annihilation rates which as mentioned previously are 
known to be smaller. Use of an experimental surface annihilation rate of 2 ns-l along 
with the relationship in equation (46) yields 

T = 500 - Dp,, PS 

where the values for D are given in table 3. This brings the pseudopotential method 
into excellent agreement with the Jensen-Nieminen method whose value for D for 
krypton is 62704 as compared with our value of 55000. Our theoretical lifetime- 
density relationship for krypton is compared with the experimental results of Jensen 
et a /  (1988) in figure 6. 

6. Conclusions 

We have calculated the binding energies, positron wavefunctions and annihilation 
rates in the noble gases Ne, Ar, Kr and Xe as a function of density. The values of the 
positron work function found in this way and using the Puska-Nieminen method were 
generally larger than those found by Gullikson and Mills Jr .  experimentally using 
LEPD. This has lead us to believe that the use of free atom polarization potentials for 
this type of calculation may have to be reconsidered. 

The use of pseudopotentials in the calculation of annihilation rates in bubbles has 
produced results in substantial agreement with experiment and with the more lengthy 
Jensen-Nieminen method in the case of krypton. The results of such calculations were 
found to  be relatively insensitive to the effective potential used for the contained gas 
and so the total annihilation rate for a bubble containing gas at a given pressure should 
be accurate despite our concern over the use off free atom polarization potentials. 

For all gases at intermediate pressures the positron was found to be in a stable 
surface state. In the cases of Ne, Ar and Kr at  high pressures, the wavefunction was 
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found to be attracted slightly into the bubble reducing the surface annihilation rate, 
but increasing the gas annihilation rate by almost the same amount. In the case 
of xenon, the wavefunction was found to deviate substantially away from the pure 
surface state at  high pressure but the wavefunction was still greatest over the surface 
potential. 

In summary, we have shown that pseudopotential calculations for positron anni- 
hilation in this type of defect, provide a fast, efficient and accurate alternative to the 
Jensen-Nieminen method of calculation. Our calculations for the previously unanal- 
ysed gases Ne, Ar and Xe, show that positron annihilation techniques will provide an 
invaluable tool in the analysis of metals defected with bubbles of any noble gas. 
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